This problem set is due in class on Tuesday, January 24, 2006.

1. Do the following problems in Bard and Faulkner: 1.5, 1.6, 2.1a, 2.3.

2. Consider a fuel cell based on the coupling of an ethanol anode to an oxygen cathode. Assume that complete oxidation of the ethanol occurs and that an acidic electrolyte (Nafion) is employed. Thus, the anode half cell can be written as:

\[
\text{CH}_3\text{CH}_2\text{OH} + 3\text{H}_2\text{O} \rightarrow \text{products}
\]

While the anode reaction would be:

\[
\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O}
\]

a. If both reactions go to completion this cell will produce \(\Delta G = -1324\text{kJ/mole of ethanol}\). What is the largest open circuit potential that one might observe from a direct ethanol fuel cell under standard conditions?

b. A direct ethanol cell operating at 110°C produces an output of 0.5V and 200mA/cm\(^2\), if this result is purely due to activation kinetic overpotential losses (i.e. no resistive or mass transport losses), what is the effective net self-exchange current \(i_o\) for this cell?

c. If 400mV of overpotential can be ascribed to the oxygen electrode under the conditions noted in part (b), what is the overpotential loss associated with the ethanol electrode and what is the effective charge transfer resistance for this electrode at the current-voltage point noted in part (b)?

3. Another method of utilizing ethanol in a fuel cell is to first steam reform the ethanol to form H\(_2\) and CO\(_2\) followed by processing the hydrogen in a fuel cell. (Steam reforming is an endothermic process that runs at about 80% efficiency.) A good hydrogen fuel cell can produce 1A/cm\(^2\) at 0.5V. How would this approach compare to the direct ethanol cell? That is, consider the consumption of 10g of ethanol in both cases and calculate an efficiency percentage for electrical energy over chemical free energy.